Solving Dirac equation using the tridiagonal matrix representation approach
نویسندگان
چکیده
منابع مشابه
On the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملOn the solving of matrix equation of Sylvester type
A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...
متن کاملSinc operational matrix method for solving the Bagley-Torvik equation
The aim of this paper is to present a new numerical method for solving the Bagley-Torvik equation. This equation has an important role in fractional calculus. The fractional derivatives are described based on the Caputo sense. Some properties of the sinc functions required for our subsequent development are given and are utilized to reduce the computation of solution of the Bagley-Torvik equati...
متن کاملSolving LR fuzzy linear matrix equation†
In this paper, the fuzzy matrix equation $Awidetilde{X}B=widetilde{C}$ in which $A,B$ are $n times n$crisp matrices respectively and $widetilde{C}$ is an $n times n$ arbitrary LR fuzzy numbers matrix, is investigated. A new numerical procedure for calculating the fuzzy solution is designed and a sufficient condition for the existence of strong fuzzy solution is derived. Some examples are ...
متن کاملA Tridiagonal Approach to Matrix Integrals
Physicists in the 70’s starting with ’t Hooft established that the number of suitably labeled planar maps with prescribed vertex degree distribution can be represented as the leading coefficient of the 1 N -expansion of a joint cumulant of traces of powers of a standard N-by-N GUE matrix. Here we undertake the calculation of this leading coefficient in a different way, namely, after first tridi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2016
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2016.03.001